Semi-skyline augmented fillings and non-symmetric Cauchy kernels for stair-type shapes

نویسندگان

  • Olga Azenhas
  • Aram Emami
چکیده

Using an analogue of the Robinson-Schensted-Knuth (RSK) algorithm for semi-skyline augmented fillings, due to Sarah Mason, we exhibit expansions of non-symmetric Cauchy kernels ∏ (i,j)∈η(1 − xiyj) −1, where the product is over all cell-coordinates (i, j) of the stair-type partition shape η, consisting of the cells in a NW-SE diagonal of a rectangle diagram and below it, containing the biggest stair shape. In the spirit of the classical Cauchy kernel expansion for rectangle shapes, this RSK variation provides an interpretation of the kernel for stair-type shapes as a family of pairs of semi-skyline augmented fillings whose key tableaux, determined by their shapes, lead to expansions as a sum of products of two families of key polynomials, the basis of Demazure characters of type A, and the Demazure atoms. A previous expansion of the Cauchy kernel in type A, for the stair shape was given by Alain Lascoux, based on the structure of double crystal graphs, and by Amy M. Fu and Alain Lascoux, relying on Demazure operators, which was also used to recover expansions for Ferrers shapes. Résumé. En utilisant an analogue de l’algorithme de Robinson-Schensted-Knuth (RSK) pour remplissages des lignes d’horizon augmentées, proposé par Sarah Mason, nous donnons des développements d’un noyau de Cauchy non symétrique, ∏ (i,j)∈η(1 − xiyj) −1, dans le cas où les paires (i, j) sont les coordonnées des cellules d’une partition η du type escalier dans un rectangle, contenant la plus grande partition escalier de ce rectangle. Dans l’esprit du développement classique sur les diagrammes rectangulaires, cette variation de RSK fournit une somme des produits de deux familles de polynômes clefs, engendrée par paires de remplissages des lignes d’horizon augmentées dont les formats définissent tableaux clefs, à savoir, la base des caractères de Demazure du type A et les Demazure atomes. Un développement du noyau de Cauchy non symétrique pour le type A, dans le cas de la partition escalier, a été donné par Alain Lascoux en employant la structure des graphes cristallins doublés, et par Amy M. Fu et Alain Lascoux, en se basant aux opérateurs de Demazure, qui a été aussi utilisé pour obtenir des expansions sur diagrammes de Ferrers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Growth Diagrams and Non-symmetric Cauchy Identities on Nw or Se near Staircases

Mason has introduced an analogue of the Robinson-Schensted-Knuth (RSK) correspondence to produce a bijection between biwords and pairs of semiskyline augmented fillings whose shapes, compositions, are rearrangements of each other. That pair of shapes encode the right keys for the pair of semi-standard Young tableaux produced by the usual Robinson-Schensted-Knuth (RSK) correspondence. We have sh...

متن کامل

An analogue of the Robinson-Schensted-Knuth correspondence and non-symmetric Cauchy kernels for truncated staircases

We prove a restriction of an analogue of the Robinson-Schensted-Knuth correspondence for semi-skyline augmented fillings, due to Mason, to multisets of cells of a staircase possibly truncated by a smaller staircase at the upper left end corner, or at the bottom right end corner. The restriction to be imposed on the pairs of semi-skyline augmented fillings is that the pair of shapes, rearrangeme...

متن کامل

A Decomposition of Schur Functions and an Analogue of the Robinson-schensted-knuth Algorithm

We exhibit a weight-preserving bijection between semi-standard Young tableaux and semi-skyline augmented fillings to provide a combinatorial proof that the Schur functions decompose into nonsymmetric functions indexed by compositions. The insertion procedure involved in the proof leads to an analogue of the Robinson-SchenstedKnuth Algorithm for semi-skyline augmented fillings. This procedure co...

متن کامل

Comment on ‘a Decomposition of Schur Functions and an Analogue of the Robinson-schensted-knuth Algorithm’

We exhibit a weight-preserving bijection between semi-standard Young tableaux and semi-skyline augmented fillings to provide a combinatorial proof that the Schur functions decompose into nonsymmetric functions indexed by compositions. The insertion procedure involved in the proof leads to an analogue of the Robinson-SchenstedKnuth Algorithm for semi-skyline augmented fillings. This procedure co...

متن کامل

Nonsymmetric Schur Functions and an Analogue of the Robinson-schensted-knuth Algorithm

We exhibit a weight-preserving bijection between semi-standard Young tableaux and skyline augmented fillings to provide the first combinatorial proof that the Schur functions decompose into nonsymmetric functions indexed by compositions. The insertion procedure involved in the proof leads to an analogue of the Robinson-SchenstedKnuth Algorithm for skyline augmented fillings. We also prove that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013